Coulomb engineering of the bandgap and excitons in two-dimensional materials
نویسندگان
چکیده
The ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS2 and WSe2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as an initial step towards the creation of diverse lateral junctions with nanoscale resolution.
منابع مشابه
Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer
In emerging optoelectronic applications, such as water photolysis, exciton fission and novel photovoltaics involving low-dimensional nanomaterials, hot-carrier relaxation and extraction mechanisms play an indispensable and intriguing role in their photo-electron conversion processes. Two-dimensional transition metal dichalcogenides have attracted much attention in above fields recently; however...
متن کاملHighly anisotropic and robust excitons in monolayer black phosphorus.
Semi-metallic graphene and semiconducting monolayer transition-metal dichalcogenides are the most intensively studied two-dimensional materials of recent years. Lately, black phosphorus has emerged as a promising new two-dimensional material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. However,...
متن کاملEnabling valley selective exciton scattering in monolayer WSe2 through upconversion
Excitons, Coulomb bound electron-hole pairs, are composite bosons and their interactions in traditional semiconductors lead to condensation and light amplification. The much stronger Coulomb interaction in transition metal dichalcogenides such as WSe2 monolayers combined with the presence of the valley degree of freedom is expected to provide new opportunities for controlling excitonic effects....
متن کاملSensitivity Analysis of Coulomb and HK Friction Models in 2D AFM-Based Nano-Manipulation: Sobol Method
Nanotechnology involves the ability to see and control individual atoms and molecules which are about 100 nanometer or smaller. One of the major tools used in this field is atomic force microscopy which uses a wealth of techniques to measure the topography and investigates the surface forces in nanoscale. Friction force is the representation of the surface interaction between two surfaces an...
متن کاملDesign of a Photonic Bandgap Fiber with Optimized Parameters to Achieve Ultra-Low Confinement Loss
In this paper, a novel design of all-solid photonic bandgap fiber with ultra-low confinement loss is proposed. The confinement loss is reduced remarkably by managing the number of rods rings, up-doping level, pitch value, and rods diameters. Moreover, the designed PCF shows ultra-flattened dispersion in L- and U-band. Furthermore, a new design, based on introducing of an extra ring of air h...
متن کامل